Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38048513

RESUMEN

Multimaterial aerosol jet printing offers a unique capability to freely mix inks with different chemical compositions in the aerosol phase, enabling one-step digital fabrication with tailored compositions or functionally graded structures, including in the x-y plane. Here, in situ mixing of two carbon nanomaterial inks with distinct electrical properties is demonstrated. By tailoring the mixing ratio of the constituent inks, electrical conductivity is modulated by 130×, and sheet resistance values for a single pass span approximately 2 orders of magnitude. The ability to manufacture components with tailored electrical properties offers significant value for hybrid and flexible electronic device applications, such as microelectronics packaging. Moreover, grading properties within a part provides a new dimension of design freedom for complex assemblies.

2.
ACS Appl Mater Interfaces ; 15(2): 3325-3335, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36608034

RESUMEN

Aerosol jet printing is a noncontact, digital, additive manufacturing technique compatible with a wide variety of functional materials. Although promising, development of new materials and devices using this technique remains hindered by limited rational ink formulation, with most recent studies focused on device demonstration rather than foundational process science. In the present work, a systematic approach to formulating a polymer-stabilized graphene ink is reported, which considers the effect of solvent composition on dispersion, rheology, wetting, drying, and phase separation characteristics that drive process outcomes. It was found that a four-component solvent mixture composed of isobutyl acetate, diglyme, dihydrolevoglucosenone, and glycerol supported efficient ink atomization and controlled in-line drying to reduce overspray and wetting instabilities while maintaining high resolution and electrical conductivity, thus overcoming a trade-off in deposition rate and resolution common to aerosol jet printing. Biochemical sensors were printed for amperometric detection of the pesticide parathion, exhibiting a detection limit of 732 nM and a sensitivity of 34 nA µM-1, demonstrating the viability of this graphene ink for fabricating functional electronic devices.

3.
Nanoscale ; 14(35): 12651-12657, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35983782

RESUMEN

Conductive inks commonly rely on oxidation-resistant metallic nanoparticles such as gold, silver, copper, and nickel. The criterion of air stability limits the scope of material properties attainable in printed electronic devices. Here we present an alternative approach based on air-stable nanoscale metal hydrides. Conductive patterns based on titanium hydride (TiH2) nanoinks were successfully printed on polyimide under ambient atmosphere and cured using intense pulsed light processing. Nanoparticles of TiH2 were generated by heating TiH2 powder in octylamine followed by wet ball milling, yielding <100 nm platelets. The addition of a suitable polymer dispersant during ball milling yielded stable colloidal dispersions suitable for liquid-phase processing. Aerosol jet printing of the resultant TiH2 nanoinks was demonstrated on glass and polyimide substrates, with a resolution as fine as 20 µm. Following intense pulsed light curing, samples on polyimide were found to exhibit a sintered, porous morphology with an electrical sheet resistance of ∼150 Ω â–¡-1.

4.
Mikrochim Acta ; 189(3): 123, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226191

RESUMEN

Printed graphene electrodes have been demonstrated as a versatile platform for electrochemical sensing, with numerous examples of rapid sensor prototyping using laboratory-scale printing techniques such as inkjet and aerosol jet printing. To leverage these materials in a scalable production framework, higher-throughput printing methods are required with complementary advances in ink formulation. Flexography printing couples the attractive benefits of liquid-phase graphene printing with large-scale manufacturing. Here, we investigate graphene flexography for the fabrication of electrodes by analyzing the impacts of ink and process parameters on print quality and electrical properties. Characterization of the printed patterns reveals anisotropic structure due to striations along the print direction, which is related to viscous fingering of the ink. However, high-resolution imaging reveals a dense graphene network even in regions of sparse coverage, contributing to robust electrical properties even for the thinnest films (< 100 nm). Moreover, the mechanical and environmental sensitivity of the printed electrodes is characterized, with particular focus on atmospheric response and thermal hysteresis. Overall, this work reveals the conditions under which graphene inks can be employed for high-speed flexographic printing, which will facilitate the development of graphene-based sensors and related devices.

5.
Lab Chip ; 22(1): 156-169, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34881383

RESUMEN

Wearable sweat biosensors offer compelling opportunities for improved personal health monitoring and non-invasive measurements of key biomarkers. Inexpensive device fabrication methods are necessary for scalable manufacturing of portable, disposable, and flexible sweat sensors. Furthermore, real-time sweat assessment must be analyzed to validate measurement reliability at various sweating rates. Here, we demonstrate a "smart bandage" microfluidic platform for cortisol detection and continuous glucose monitoring integrated with a synthetic skin. The low-cost, laser-cut microfluidic device is composed of an adhesive-based microchannel and solution-processed electrochemical sensors fabricated from inkjet-printed graphene and silver solutions. An antibody-derived cortisol sensor achieved a limit of detection of 10 pM and included a low-voltage electrowetting valve, validating the microfluidic sensor design under typical physiological conditions. To understand effects of perspiration rate on sensor performance, a synthetic skin was developed using soft lithography to mimic human sweat pores and sweating rates. The enzymatic glucose sensor exhibited a range of 0.2 to 1.0 mM, a limit of detection of 10 µM, and reproducible response curves at flow rates of 2.0 µL min-1 and higher when integrated with the synthetic skin, validating its relevance for human health monitoring. These results demonstrate the potential of using printed microfluidic sweat sensors as a low-cost, real-time, multi-diagnostic device for human health monitoring.


Asunto(s)
Técnicas Biosensibles , Sudor , Glucemia , Automonitorización de la Glucosa Sanguínea , Glucosa , Humanos , Hidrocortisona , Microfluídica , Reproducibilidad de los Resultados , Sudoración
6.
ACS Appl Mater Interfaces ; 12(7): 8592-8603, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32040290

RESUMEN

Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 µm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Grafito/química , Interferón gamma/sangre , Interleucina-10/sangre , Nanoestructuras/química , Impresión Tridimensional/instrumentación , Aerosoles/química , Animales , Anticuerpos/inmunología , Técnicas Biosensibles/instrumentación , Dióxido de Carbono/química , Bovinos , Colodión/química , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Imidas/química , Tinta , Interferón gamma/inmunología , Interleucina-10/inmunología , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Confocal , Nanoestructuras/ultraestructura , Polímeros , Especies Reactivas de Oxígeno/química , Análisis Espectral , Espectrometría Raman , Propiedades de Superficie
7.
ACS Appl Mater Interfaces ; 11(10): 9947-9954, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30758176

RESUMEN

Freestanding ion gels (FIGs) provide unique opportunities for scalable, low-cost fabrication of flexible microsupercapacitors (MSCs). While conventional MSCs employ a distinct electrolyte and substrate, FIGs perform both functions, offering new possibilities for device integration and multifunctionality while maintaining high performance. Here, a capillarity-driven printing method is demonstrated to manufacture high-precision graphene electrodes on FIGs for MSCs. This method achieves excellent self-alignment and resolution (width: 50 µm, interdigitated electrode footprint: <1 mm2) and 100% fabrication yield (48/48 devices) and is readily generalized to alternative electrode materials including multiwalled carbon nanotubes (MWCNTs). The devices demonstrate good performance, including high specific capacitance (graphene: 0.600 mF cm-2; MWCNT: 6.64 mF cm-2) and excellent stability against bending, folding, and electrical cycling. Moreover, this strategy offers unique opportunities for device design and integration, including a bifacial electrode structure with enhanced capacitance (graphene: 0.673 mF cm-2; MWCNT: 7.53 mF cm-2) and improved rate performance, print-and-place versatility for integration on diverse substrates, and multifunctionality for light emission and transistor gating. These compelling results demonstrate the potential of FIGs for scalable, low-cost fabrication of flexible, printed, and multifunctional energy storage devices.

8.
ACS Appl Mater Interfaces ; 11(6): 5675-5681, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30693759

RESUMEN

Solution-processed two-dimensional materials offer a scalable route toward next-generation printed devices. In this report, we demonstrate fully inkjet-printed photodetectors using molybdenum disulfide (MoS2) nanosheets as the active material and graphene as the electrodes. Percolating films of semiconducting MoS2 with high electrical conductivity are achieved with an ethyl cellulose-based ink formulation. Two classes of photodetectors are fabricated, including thermally annealed devices on glass with fast photoresponse of 150 µs and photonically annealed devices on flexible polyimide with high photoresponsivity exceeding 50 mA/W. The photonically annealed photodetector also reduces the curing time to milliseconds and maintains functionality over 500 bending cycles.

9.
ACS Appl Mater Interfaces ; 10(26): 22303-22310, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29894146

RESUMEN

Printed graphene microsupercapacitors (MSCs) are attractive for scalable and low-cost on-chip energy storage for distributed electronic devices. Although electronic devices have experienced significant scaling to smaller formats, the corresponding miniaturization of energy storage components has been limited, with a typical resolution of ∼30 µm for printed graphene patterns to date. Transfer printing is demonstrated here for patterning graphene electrodes with fine line and spacing resolution less than 5 µm. The resulting devices exhibit an exceptionally small footprint (∼0.0067 mm2), which provides, to the best of our knowledge, the smallest printed graphene MSCs. Despite this, the devices retain excellent performance with a high areal capacitance of ∼6.63 mF/cm2 along with excellent electrochemical stability and mechanical flexibility, resulting from an efficient nonplanar electrode structure and an optimized two-step photoannealing method. As a result, this miniaturization strategy facilitates the on-chip integration of printed graphene MSCs to power emerging electronic devices.

10.
ACS Appl Mater Interfaces ; 10(18): 15988-15995, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29667396

RESUMEN

Scalable fabrication of high-resolution electrodes and interconnects is necessary to enable advanced, high-performance, printed, and flexible electronics. Here, we demonstrate the direct printing of graphene patterns with feature widths from 300 µm to ∼310 nm by liquid-bridge-mediated nanotransfer molding. This solution-based technique enables residue-free printing of graphene patterns on a variety of substrates with surface energies between ∼43 and 73 mN m-1. Using printed graphene source and drain electrodes, high-performance organic field-effect transistors (OFETs) are fabricated with single-crystal rubrene (p-type) and fluorocarbon-substituted dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIF-CN2) (n-type) semiconductors. Measured mobilities range from 2.1 to 0.2 cm2 V-1 s-1 for rubrene and from 0.6 to 0.1 cm2 V-1 s-1 for PDIF-CN2. Complementary inverter circuits are fabricated from these single-crystal OFETs with gains as high as ∼50. Finally, these high-resolution graphene patterns are compatible with scalable processing, offering compelling opportunities for inexpensive printed electronics with increased performance and integration density.

11.
ACS Appl Mater Interfaces ; 9(35): 29418-29423, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28820238

RESUMEN

High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates. The resulting porous microstructure and broad liquid-phase patterning compatibility are exploited for printed graphene microsupercapacitors on paper-based substrates.

12.
ACS Nano ; 11(7): 7431-7439, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28686415

RESUMEN

Pristine graphene inks show great promise for flexible printed electronics due to their high electrical conductivity and robust mechanical, chemical, and environmental stability. While traditional liquid-phase printing methods can produce graphene patterns with a resolution of ∼30 µm, more precise techniques are required for improved device performance and integration density. A high-resolution transfer printing method is developed here capable of printing conductive graphene patterns on plastic with line width and spacing as small as 3.2 and 1 µm, respectively. The core of this method lies in the design of a graphene ink and its integration with a thermally robust mold that enables annealing at up to ∼250 °C for precise, high-performance graphene patterns. These patterns exhibit excellent electrical and mechanical properties, enabling favorable operation as electrodes in fully printed electrolyte-gated transistors and inverters with stable performance even following cyclic bending to a strain of 1%. The high resolution coupled with excellent control over the line edge roughness to below 25 nm enables aggressive scaling of transistor dimensions, offering a compelling route for the scalable manufacturing of flexible nanoelectronic devices.

13.
Nano Lett ; 17(4): 2539-2546, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28240911

RESUMEN

Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

14.
ACS Appl Mater Interfaces ; 8(43): 29594-29599, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27723296

RESUMEN

We demonstrate conductive templating interlayers of graphene ink, integrating the electronic and chemical properties of graphene in a solution-based process relevant for scalable manufacturing. Thin films of graphene ink are coated onto ITO, following thermal annealing, to form a percolating network used as interlayer. We employ a benchmark n-type semiconductor, C60, to study the interface of the active layer/interlayer. On bare ITO, C60 molecules form films of homogeneously distributed grains; with a graphene interlayer, a preferential orientation of C60 molecules is observed in the individual graphene plates. This leads to crystal growth favoring enhanced charge transport. We fabricate devices to characterize the electron injection and the effect of graphene on the device performance. We observe a significant increase in the current density with the interlayer. Current densities as high as ∼1 mA/cm2 and ∼70 mA/cm2 are realized for C60 deposited with the substrate at 25 °C and 150 °C, respectively.

15.
ACS Appl Mater Interfaces ; 8(27): 17428-34, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27327555

RESUMEN

Recent developments in solution-processed amorphous oxide semiconductors have established indium-gallium-zinc-oxide (IGZO) as a promising candidate for printed electronics. A key challenge for this vision is the integration of IGZO thin-film transistor (TFT) channels with compatible source/drain electrodes using low-temperature, solution-phase patterning methods. Here we demonstrate the suitability of inkjet-printed graphene electrodes for this purpose. In contrast to common inkjet-printed silver-based conductive inks, graphene provides a chemically stable electrode-channel interface. Furthermore, by embedding the graphene electrode between two consecutive IGZO printing passes, high-performance IGZO TFTs are achieved with an electron mobility of ∼6 cm(2)/V·s and current on/off ratio of ∼10(5). The resulting printed devices exhibit robust stability to aging in ambient as well as excellent resilience to thermal stress, thereby offering a promising platform for future printed electronics applications.

16.
Adv Mater ; 27(44): 7058-64, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26439306

RESUMEN

All-printed, foldable organic thin-film transistors are demonstrated on glassine paper with a combination of advanced materials and processing techniques. Glassine paper provides a suitable surface for high-performance printing methods, while graphene electrodes and an ion-gel gate dielectric enable robust stability over 100 folding cycles. Altogether, this study features a practical platform for low-cost, large-area, and foldable electronics.


Asunto(s)
Compuestos Orgánicos , Papel , Impresión , Transistores Electrónicos , Electrodos , Grafito/química , Fenómenos Mecánicos
17.
Adv Mater ; 27(42): 6683-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26422363

RESUMEN

Intense pulsed light (IPL) annealing of graphene inks is demonstrated for rapid post-processing of inkjet-printed patterns on various substrates. A conductivity of ≈25,000 S m(-1) is achieved following a single printing pass using a concentrated ink containing 20 mg mL(-1) graphene, establishing this strategy as a practical and effective approach for the versatile and high-performance integration of graphene in printed and flexible electronics.


Asunto(s)
Elasticidad , Equipos y Suministros Eléctricos , Grafito , Tinta , Luz , Impresión/métodos , Conductividad Eléctrica , Grafito/química , Grafito/efectos de la radiación , Análisis de los Mínimos Cuadrados , Microscopía de Fuerza Atómica , Procesos Fotoquímicos , Polímeros/química , Polímeros/efectos de la radiación , Impresión/instrumentación
18.
J Phys Chem Lett ; 6(4): 620-6, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26262476

RESUMEN

Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.


Asunto(s)
Carbono/química , Electrónica/métodos , Nanoestructuras/química , Impresión Tridimensional
19.
ACS Nano ; 9(4): 4636-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25858670

RESUMEN

The exceptional properties of graphene enable applications in electronics, optoelectronics, energy storage, and structural composites. Here we demonstrate a 3D printable graphene (3DG) composite consisting of majority graphene and minority polylactide-co-glycolide, a biocompatible elastomer, 3D-printed from a liquid ink. This ink can be utilized under ambient conditions via extrusion-based 3D printing to create graphene structures with features as small as 100 µm composed of as few as two layers (<300 µm thick object) or many hundreds of layers (>10 cm thick object). The resulting 3DG material is mechanically robust and flexible while retaining electrical conductivities greater than 800 S/m, an order of magnitude increase over previously reported 3D-printed carbon materials. In vitro experiments in simple growth medium, in the absence of neurogenic stimuli, reveal that 3DG supports human mesenchymal stem cell (hMSC) adhesion, viability, proliferation, and neurogenic differentiation with significant upregulation of glial and neuronal genes. This coincides with hMSCs adopting highly elongated morphologies with features similar to axons and presynaptic terminals. In vivo experiments indicate that 3DG has promising biocompatibility over the course of at least 30 days. Surgical tests using a human cadaver nerve model also illustrate that 3DG has exceptional handling characteristics and can be intraoperatively manipulated and applied to fine surgical procedures. With this unique set of properties, combined with ease of fabrication, 3DG could be applied toward the design and fabrication of a wide range of functional electronic, biological, and bioelectronic medical and nonmedical devices.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Conductividad Eléctrica , Grafito/química , Grafito/farmacología , Impresión Tridimensional , Andamios del Tejido/química , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Tinta , Fenómenos Mecánicos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Modelos Moleculares , Conformación Molecular , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Poliglactina 910/química
20.
Adv Mater ; 27(1): 109-15, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25377870

RESUMEN

High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 µm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...